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This article is the first in a serles of articles investigating the use of differenced
data types for deep-space navigation. Subsequent articles will address the primary
error sources affecting these data types and other important issues regarding their
implementation. At the present time, radio interferometric measurements such
as Delta-Differenced One-Way Range (ADOR) are formed by differencing near-
simultaneous spacecraft and quasar time-delay measurements, in order to eliminate
the effects of station clock offset errors and other error sources. This article presents
a simple error covariance analysis of an alternative tracking scheme, in which dif-
ferenced (“two-way” minus “three-way”) range data are used directly to estimate
the declination and right ascension of a distant spacecraft. The tracking scheme
also estimates a measurement bias representing station clock offset and other cali-
bration errors. The results of the analysis indicate that, with clock offset and other
calibration data derived from the Global Positioning System (GPS), coupled with
improvements in Deep Space Network (DSN) ranging system calibration accuracy,
it is theoretically possible to determine spacecraft angular coordinates to accuracies
of 30 to 90 nrad using about four hours of differenced range data. This level of
accuracy should enable differenced range to support medium-accuracy missions on
its own, or serve as a backup to ADOR for missions requiring greater navigation
accuracy. Additional work will need to be performed to establish estimates of the
complete spacecraft navigation accuracies that may be achieved operationally with
combinations of differenced range data and other data types.

l. Introduction

The idea of using Very Long Baseline Interferometry
(VLBI) in the form of differenced Doppler and range mea-
surements for deep-space navigation originated approxi-
mately twenty years ago as a means for improving navi-
gation accuracies over those obtained with single-station

Doppler and range measurements [1-3]. In addition to
providing increased navigation performance, differenced
Doppler and ranging measurements were also found to be
less sensitive to station location errors and poorly mod-
eled spacecraft nongravitational forces, error sources that
can have a significant effect on conventional Doppler and
range data.
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There were actually five different interferometric angu-
lar measurement schemes originally considered for use in
spacecraft navigation:

(1) Two-Way Minus Three-Way Doppler,
(2) Delta-Differenced One-Way Doppler (ADOD),
(3) Two-Way Minus Three-Way Range (differenced

range),

(4) Differenced Near-Simultaneous Two-Way Range
(DTR), and

(5) Delta-Differenced One-Way Range (ADOR).

Of these, the differenced Doppler data types have been
used primarily in the navigation of planetary orbiters and
will not be discussed further; this article focuses on the use
of differenced ranging techniques for spacecraft navigation
in interplanetary space.

Delta-Differenced One-Way Range measurements are
formed by differencing spacecraft VLBI time-delay mea-
surements with similar observations of a stable extragalac-
tic radio source such as a quasar (located nearby on the
celestial sphere). The ADOR technique originated as a
means to greatly reduce or eliminate the effects of station
location and clock offset errors, which afflict the other dif-
ferenced ranging schemes mentioned above [4]. During the
Voyager Saturn encounter in 1980, both DTR and ADOR
data were taken by the Deep Space Network (DSN) and
used for orbit determination; DTR was serving as an op-
erational data type, while ADOR was considered an ex-
perimental data type. Based on the superior performance
of ADOR during this encounter, it was adopted as the
operational angular data type for the remainder of the
Voyager mission [5]. The ADOR technique will be used
extensively for the Galileo, Ulysses, and Mars Observer
niissions during the next several years. Previous studies
have indicated that the ADOR system that will be used
by Galileo is theoretically capable of determining angular
coordinates to accuracies of 20 to 25 nrad [6].

Two-Way Minus Three-Way Range, which is referred
Lo here as differenced range, has never been used opera-
tionally, primarily due to a lack of capability within the
DSN to accurately determine clock offscts between sta-
tions. These clock offsets must be calibrated to accura-
cies of 1 to 2 nsec in order to reduce the biases intro-
duced into differenced range measurements by timing er-
rors to acceptable levels. Although differenced range data
have not actually been used, the basic system elements
needed to implement this data type—two-way and three-
way ranging systems and a highly accurate clock offset
calibration system—are now either operational or within
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reach. Studies indicate that the Global Positioning System
(GPS) can potentially deliver clock calibration informa-
tion of 1 nsec accuracy over intercontinental baselines [7].
While two-way range has been in operational use for many
years, three-way ranging was used operationally for the
first time during the Voyager Neptune encounter, making
use of GPS-based clock offset calibration data with accu-
racies of 10 to 20 nsec [8,9]. Another potentially significant
error source in differenced ranging measurements, that of
Earth-orientation uncertainty, can also be determined us-
ing GPS and VLBI measurements to accuracies of better
than 10 nrad, which is sufficient to ensure that the effects
of these errors on differenced range data are minimal [10].

If differenced ranging could deliver angular accuracies
of 50 to 100 nrad with the aid of GPS-based clock off-
set and Earth-orientation calibrations, it could serve as
a supplementary or backup data type to ADOR, which
is very accurate but operationally cumbersome. Differ-
enced ranging can be accomplished without interruption
of spacecraft command and telemetry exchanges, since it
does not require quasar tracking data as does ADOR.
Differenced range also would not require the correlation
process needed to form ADOR measurements; two-way
and three-way range data can be sent from DSN sites to
the Space Flight Operations Facility (SFOF) at the Jet
Propulsion Laboratory (JPL) in near-real time, where the
differenced range data could be computed and calibrated
directly within the existing navigation software system.
Thus, differenced range data are easier to acquire than
ADOR data and can be made available for orbit deter-
mination use in near-real time, although it must be re-
membered that the quality of differenced range data can
depend substantially upon the quality of externally sup-
plied calibrations.

What follows is a simple, analytic error covariance anal-
ysis of the DSN’s theoretical ability to determine space-
craft angular coordinates using about four hours of dif-
ferenced ranging data that encompass differenced ranging
passes from one or two DSN intercontinental baselines. A
measurement bias assumed to represent the clock offset
and station signal-path calibration errors that affect the
data is also included in the analysis, in order to determine
if these errors can be estimated using the differenced range
data signature itself. In particular, the sensitivity of angu-
lar accuracies to the a priori measurement bias uncertainty
is investigated to determine whether or not 50-100 nrad
angular accuracy can be achieved with projected GPS-
based calibrations. Further work i1s needed to establish
realistic estimates of the complete spacecraft navigation
accuracies that may be achieved using differenced range
in concert with other data types.



Il. Error Covariance Analysis

The differenced range measurement scheme is illus-
trated in Fig. 1. The observable consists simply of the
difference of the downlink pathlengths between the two
participating tracking stations. The geometry associated
with differenced range measurements is depicted in Fig. 2.
Using Fig. 2 as a guide, it has been shown by previous
researchers [1,2,4] that the differenced range observable,
denoted here as Ap, is

Ap:5-(?/7'):chos6cosHB+zBsin6 (1)

where
rp = baseline component normal to the spin axis of
Earth
zp = baseline component parallel to the spin axis of
Earth
Hp = baseline hour angle, ap — a
a = spacecraft right ascension
ap = baseline right ascension, ay, + Ap

a, = right ascension of the Greenwich meridian
Ap = baseline longitude

§ = spacecraft declination

In Eq. (1), the baseline vector components are ex-
pressed as a function of cylindrical coordinates which are,
in turn, functions of the cylindrical coordinates of the two
stations comprising the baseline. Figure 3 illustrates the
station and spacecraft position-coordinate definitions used
in this analysis. Using the station coordinates shown in
Fig. 3, the baseline coordinates are

1/2
rg = {(Ta, + 1-32)2 — Qr,‘r”[l ~+ cos(Ay — /\2)]}

Zs

17 %2 (2)

Ap = tan~? (7‘3] sin A; — 75, sin Ag )

s, COS Ay — T, COS Aa

(N
[os]
I

where

re,,Ts, = station distances from the spin axis of Earth
zs,,2s, = station distances from the equator of Larth

A1, Ao = station longitudes

The differenced range observable model, Eq. (1), serves
as the basis for the development of analytic expressions
for the error covariance matrix associated with a weighted
least-squares estimate of the spacecraft coordinates ¢ and
a. The measurement equation assumed for the estimation
process is

z=Ap+b+v (3)

2z = observed value of differenced range measurement
Ap = actual differenced range value
b = measurement bias

v = random variable representing measurement noise

A series of N independent measurements can be com-
bined into a linear matrix equation relating small per-
turbations of the measurements from their predicted
values to small perturbations of the spacecraft coordi-
nates and the measurement bias from their a priori val-
ues as

AZ = AAT+ 7 (4)
where

A7 = vector of measurement residuals (actual—
predicted)

AT = [AS, Aa, Ab)T

7= [v,ve,- Nt

The A matrix is the differential correction matrix con-
taining the partial derivatives of the measurements with
respect to the estimated parameters:

(8z1/0%)
(0z0/0%)
A= -

(BzN‘/a;i’)

In this analysis, the spacecraft angular coordinates &
and « are assumed to be constant over the duration of
the tracking pass, a reasonable assumption for spacecraft
at interplanetary distances and the time periods (about
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12 hours) of interest here. For a series of differenced range
measurements of constant variance azp, the information
array J, which is the product AT A4 scaled by the inverse
of the measurement variance, can be written as

N
J=ATA(1/c},) = (N/o%,) Z 9z /08)T (92 /0F) (6)

It has been shown in previous work of this nature [4,11,
12] that if the time interval between measurements is both
constant and small, then the summation in Eq. (6) can be
described approximately by the integral expression

I~ (UQIM) /tlz(az/(’)f)T(Bz/af)dt (7)

Ap
where

t1,12 = tracking pass start and stop times,
respectively

At = time interval between measurements

Using Eqgs. (1), (3), and (7), the error covariance matrix
associated with the estimates of §, «, and b can be written
as

A= E'[(.‘z: —T)(F—1&) ]: crgf 0'20 002,)
T Tab T
= [A;1+ 7] (8)

In Eq. (8), A, is the a priori error covariance matrix.
The integration specified in Eq. (7) can be carried out with
a change of variable; the baseline hour angle can be written
as

Hp = w(t —t,) 9
where
wt, = «
w = Earth rotation rate

The variable of integration and its associated limits—
assuming a symmetric tracking pass about Hg = 90 deg
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(the reasoning behind this choice is discussed immediately

below)—become
dt = dHp/w (10)
Hp, Hp, — = —w, X 1y (11)
2 2
where

¥ £ tracking pass half-width

From the illustration of differenced range measurement
geometry in Fig. 2, it can be shown that a spacecraft near
the Earth’s equator (in an angular sense) is generally near
its highest point in the sky, as seen by both stations com-
prising the baseline, when the baseline hour angle is at or
near 90 deg or 270 deg (depending upon how the direc-
tion in which the baseline vector points is defined). The
tracking pass width, which is the angle 2¥, represents the
angle that the Earth can rotate through (centered about
Hp ~ 90 deg or 270 deg) with the spacecraft in view from
both of the stations participating in the differenced rang-
ing pass. It will be seen subsequently that the value of
¥ for a particular baseline depends upon the longitudi-
nal separation of the stations forming the baseline and the
declination of the spacecraft being tracked.

The information array is calculated by using the partial
derivatives of the observable model, which is specified by
Egs. (1) and (3), to integrate Eq. {(7) with the variable of
integration and limits given in Egs. (10) and (11). The
partial derivatives are

0z/0(6,a,b) = [-rpsinécos Hg + zp cosé,
rgcosésin Hg, 1] (12)

The information array is found to be

Ju Jiz i3 ( 1
J=|Jiz Jo2 Ju| | 5 ) (13)
Jiz Jaz Jaz TapwAl

Jin = (rpsiné)?(¥ — 1/2sin 2¥) + 2(Zg cos §)*¥

Ji2= 2(rpzp cos? 8)sin ¥



Jia = 2(zpcosb)¥

Joo = (rgcos$)*(¥ + 1/2sin 2¥)
Joz = 2(rpcosé)sin ¥

Jsz = 2¥

To complete the development of the error covariance
matrix, Eq. (8), the a priori error covariance matrix A,
must be specified. In this analysis, it is assumed that
some a priori estimate of the differenced range measure-
ment bias b is available, representing the result of clock
offset and station signal path calibrations performed prior

to the tracking pass. The inverse of the a priori error co-
variance matrix can then be written as

0
D (14)

where

op, = 1o uncertainty of a priori measurement
bias calibration

Substituting Eq. (14) into the error covariance matrix
expression, Eq. (8), along with the information array ele-
ments given in Eq. (13), the diagonal elements of the error
covariance matrix are found to be

o} At
ol = (w—zp——){(\l/—kl/?sin%ll)

x [2U +wAl(oa,/0s,)%] - da} (15)
. waszt 2 2
o, = D {tan (¥ — 1/2sin ¥)

x [2¥ + wAt(a'Ap/o'bo)Q]

+Q\Il(zB/rB)z(oAp/abo)EwAt} (16)

wol At
ol = (—%—) (] sin® 8(dy) + 2 cos® 6(dy — d3)]

(17)

where
D = rksin? 6{d[2¥ + wAt(oa,/0s,)%]
— da(¥ — 1/25in 29)}

+ 2} cos? §[(wAL)(0ap/0b,) (d2 — d3)]  (18)

and

dy = w2 —1/4sin?2V¥
dy = 2¥? 4 ¥sin 2¥ (19)
d3 = 4sin? ¥

Inspection of Eq. (17) reveals that when 6 = 0, the
variance of the measurement bias estimate is equal to its
a priori value. Thus, to the level of the approximations
made here, the differenced range data signature does not
contain any information regarding the clock offset/signal
path delay for spacecraft at zero declination. This fact can
be further illustrated by noting that the information ar-
ray, Eq. (13), becomes singular when 6 = 0. For spacecraft
at declinations at or near zero, differenced range naviga-
tion accuracy is limited by the accuracy of the a priori
measurement bias calibration.

lll. Navigation Accuracy Results

In order to compute estimation accuracies for §, «, and
b using Egs. (15)-(19), suitable values must be chosen for
the differenced range data accuracy oca,, the data rate
At, and the a priori measurement bias uncertainty o,.
The two-way S-band (2.3-GHz) range data currently be-
ing acquired from the Galileo spacecraft typically exhibit
an intrinsic noise level (1¢) of about 15 cm over the course
of a single ranging pass.! If a similar noise level is as-
sumed for three-way range data (which when used opera-
tionally are acquired with the same ranging system hard-
ware used for two-way data), then the differenced range
noise level, assuming that the two-way and three-way mea-
surement noise processes are independent, would be at
worst (152 4+152)1/2 or 21.2 cm. The value of o4, used in
this study was rounded to 20 cm. For comparison, ADOR
random measurement noise has been predicted to be about

1 V. M. Pollmeier, Galileo Navigation Team, and G. S. Johnson, Se-
quential Ranging Assembly (SRA) System Engineer, private com-
munication, Jet Propulsion Laboratory, Pasadena, California.
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14 cm for ADOR tracking of Galileo with the DSN Narrow
Channel Bandwidth VLBI System.2 The chosen value of
At was 240 sec, which should be within the capabilities
of the present DSN ranging system.? Values of o;, were
chosen ranging from 10 nsec, which is the best accuracy ob-
tainable using present DSN ranging system calibrations,*
to 1.7 nsec, which is representative of the accuracy that
could be obtained with GPS-based transmission media and
station clock offset calibrations [7,13].

The final parameter that needs to be addressed is the
tracking pass width attainable from DSN baselines. Fig-
ure 4 illustrates the overlap regions in which a space-
craft would be simultaneously visible from two Deep Space
Communications Complexes (DSCCs) as a function of
spacecraft declination and the longitude of the subspace-
craft point (the longitude line that has the same right as-
cension as the spacecraft), assuming a 10-deg elevation
cutofl at each DSCC. The angular width of each overlap
region shown in Fig. 4 corresponds to the tracking pass
width, 2¥, which can be obtained from a specified base-
line for a given spacecraft declination. In looking at Fig. 4,
it is evident that tracking pass width can vary greatly with
declination, especially for the Madrid—Goldstone baseline,
since both of the DSN sites making up this baseline are
located in the northern hemisphere. It is also evident that
the tracking pass width for the Madrid-Canberra baseline
is too small to be effectively utilized over the entire decli-
nation range shown. Over the declination range of —25 deg
to +25 deg, which is roughly spanned by the ecliptic plane
(where most interplanetary spacecraft trajectories lie), the
tracking pass width for the Canberra-Goldstone baseline
is very nearly constant, having a value of about 60 deg.
The tracking pass width for the Madrid-Goldstone base-
line, on the other hand, varies from about 90 deg at a
declination of 25 deg to essentially zero at —25 deg.

Using Egs. (15)—(19), the theoretical angular accuracies
for a single differenced ranging pass from the Canberra-
Goldstone baseline and the Madrid-Goldstone baseline
were computed and are shown in Figs. 5(a) and 5(b) and
Figs. 6(a) and 6(b), respectively, as a function of declina-

2J. B. Thomas, “An Error Analysis for Galileo Angular Position
Measurements With the Block I ADOR System,” JPL Engineering
Memorandum 335-26 (internal document), Jet Propulsion Labora-
tory, Pasadena, California, November 11, 1981.

3G. S. Johnson, private communication, Jet Propulsion Laboratory,
Pasadena, California.

4 With present DSN clock offset, signal path, and transmission me-
dia calibration systems, differenced range measurement bias errors
would be dominated by clock offset calibration errors; the JPL Fre-
quency and Timing Systems (FTS) Group currently issues weekly
DSN clock offset estimates derived from GPS tracking data which

are accurate to 10-20 nsec.
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tion. Table 1 contains current values of station location
and baseline coordinate data for three representative DSN
stations and the baselines formed by them,® which were
used to generate the results shown in Figs. 5 and 6, and all
subsequent figures. The tracking pass width values used
were derived from Fig. 4. The value of ¥ used for the
Canberra—Goldstone baseline was 30 deg over the declina-
tion range considered (—20 deg to +20 deg). In the case
of the Madrid—-Goldstone baseline, ¥ varied from about
6 deg at a declination of —20 deg to a value of 30 deg for
declinations of 5 deg and greater (at high declinations, the
maximum possible value of ¥ for this baseline actually ex-
ceeds 30 deg, but the maximum value used in this study
was fixed at 30 deg). Note that the Canberra—Goldstone
baseline is potentially capable of determining both é and «
to an accuracy of about 80 nrad, except when 6 is within a
few degrees of zero. Clearly, the Madrid-Goldstone base-
line cannot determine § very well at all in the near-zero
declination regime; declination accuracy in this region de-
pends primarily upon the magnitude of the baseline z-
height coordinate, which for this baseline is very small.

Measurement bias estimation accuracies obtained for
an a priori measurement bias uncertainty of 10 nsec are
shown in Figs. 7(a) and 7(b). In contrast to the accuracy
statistics shown in Figs. 5 and 6, in which it was assumed
that no a priori information was available for é and «, the
bias uncertainties shown in Fig. 7 were computed assum-
ing a priori uncertainties (1¢) of 100, 200, and 500 nrad for
both é§ and «, in order to determine how well the measure-
ment bias may be estimated in the near-zero declination
regime. (Recall that the measurement bias cannot be es-
timated if § = 0 and no a priori knowledge of é and « is
assumed.)

Figure 7(b), which shows the bias estimation accuracy
for the Madrid—Goldstone baseline, indicates that bias es-
timation capability is very sensitive to the tracking pass
width, as shown by the accuracy improvement which takes
place at higher declinations, where ¥ is larger. The statis-
tics shown in Fig. 7 suggest that for spacecraft at near-zero
declinations, a series of differenced ranging passes could be
used to achieve sub-100-nrad declination accuracies, even
for 10-nsec a priori bias uncertainties, since the informa-
tion gained from each pass would serve as the a priori infor-
mation needed to estimate the bias during the next pass.
(This tracking strategy, of course, assumes that estimates
of the rate of change of both 6 and a are also obtained
from the differenced range data or other data types.)

5T. D. Moyer, “Station Location Sets Referred to the Radio Frame,”
JPL Interoffice Memorandum 314.5-1334 (internal document), Jet
Propulsion Laboratory, Pasadena, California, February 24, 1989.



Figures 8(a) and 8(b) show the angular accuracies ob-
tained by combining data from both Canberra-Goldstone
and Madrid-Goldstone differenced ranging passes. These
computations were performed by substituting the informa-
tion array expressions in Eq. (13) and appropriate a priori
error covariances into the general error covariance matrix
given in Eq. (8). For each declination value considered,
the error covariance for § and a obtained from the first
tracking pass was used as the a priori error covariance for
the second tracking pass. In these cases, the tracking pass
duration for each baseline was 2 hours (¥ = 15 deg), for
a total of 4 hours of data between the two. The mea-
surement biases for the two baselines were assumed to
be separate and independent of each other and to have
identical a priori uncertainties. No results are shown in
Fig. 8 for declinations below —15 deg because the mutual
visibility time period for the Madrid-Goldstone baseline
drops below 2 hours at this point; spacecraft at very low
declinations must be tracked primarily by the Canberra—
Goldstone baseline.

It can be seen in Fig. 8 that both o4 and o are highly
dependent upon the magnitude of the a priori mecasure-
ment blas uncertainty, except perhaps when oy, is assumed
to be 1.7 nsec. Note that when the a priori bias uncer-
tainty is 1.7 nsec, the dual-baseline accuracies shown in
Fig. 8 are superior to the single-baseline accuracics shown
in Figs. 5 and 6, but that when the a priori bias uncer-
tainty is greater, the single-baseline accuracies are some-
times better than those of the dual-bascline data set. Re-
member that the total tracking time was the same in all
cases: 4 hours on one baseline in the single-baseline cases,
and 2 hours on each of two different baselines in the dual-
baseline cases. The sole exception to this rule occurred
for the Madrid-Goldstone single-baseline cases with de-
clinations of less than about 5 deg, where tracking-pass
durations of less than 4 hours had to be used {see Fig. 4).
Based on the accuracy curves shown in Iigs. 5, 6, and 8, it
appears that if the a priori DSN differenced range bias un-
certainties are large, it is generally preferable to acquire a
longer arc of differenced range data from a single baseline
so that the bias can be estimated, whereas if the a pri-
ori biases are well known, it is generally better to acquire
shorter data arcs from different baselines.

IV. Discussion

The results presented in this analysis should be inter-
preted cautiously, as they are dependent upon the assump-
tions made and the values chosen for parameters such as
the a priori bias uncertainty and the differenced range mea-

surement accuracy. It must also be remembered that this
type of analysis establishes only theoretical navigation ac-
curacies for an idealistic model of spacecraft motion. In
computing the accuracy statistics presented above, the ef-
fects of Earth orientation errors and baseline coordinate
errors on the differenced range data were not considered.
Through the use of extensive DSN VLBI quasar observa-
tions, DSN baseline coordinates have already been deter-
mined to an accuracy of 5 to 10 cm, corresponding to base-
line orientation uncertainties of about 5 to 10 nrad.® With
a combination of GPS tracking data and VLBI quasar
observations, Earth orientation uncertainty, which affects
DSN Doppler, range, and ADOR measurements as well
as differenced range measurements, should be determined
on a regular basis to an accuracy of about 10 nrad in the
near future (2 to 5 years), as opposed to the current level of
about 30 nrad [10]. If independent Earth orientation and
baseline orientation errors of 10 nrad (1o} were included in
this analysis, the navigation accuracies shown in Figs. 5,
6, and 8 would be degraded by about 10 percent. Another
differenced range error source which was not considered in
this study is troposphere calibration error. The effects of
this error source, though negligible for data acquired at
higher elevation angles, may be significant for elevations
of about 15 deg or less, given current troposphere calibra-
tion error uncertainties. Fortunately, tropospheric signal
delays may also be predicted using GPS-based measure-
ments to a level of accuracy that would reduce the effects
of these calibration errors to negligible levels [13].

As pointed out earlier, differenced range has some op-
erational advantages over ADOR, in that ranging data
can be acquired without interrupting spacecraft command
and telemetry activities. This aspect of differenced range
may prove to be invaluable during periods in which it is
desirable to obtain continuous spacecraft telemetry, such
as the approach phase preceding a planetary encounter or
spacecralt maneuver. Even though differenced range can
eliminate some of the operational problems associated with
ADOR, it has its own set of problems. One of ADOR’s
virtues is that 1t is largely a self-calibrating data type; as
seen in the differenced range accuracy results presented
here, the angular coordinate accuracies obtained from dif-
ferenced range data can be highly dependent upon the
quality of externally supplied station clock oflset, signal
path, and transmission media calibrations.

6 J. S. Border, “An Analysis of ADOR and ADOD Measurement Er-
rors for Mars Observer Using the DSN Narrow Channel Bandwidth
VLBI System,” JPL Interoffice Memorandum 335.1-90-026 (inter-
nal document), Jet Propulsion Laboratory, Pasadena, California,
May 15, 1990.

53



V. Conclusions

The theoretical angular navigation accuracy that can
be achieved with differenced range data was explored, us-
ing a simple analytic model for the error covariance matrix
obtained from one or two differenced range tracking passes
made from DSN intercontinental baselines. The analysis
took into account the effects of station clock offset and
signal-path calibration errors by including a differenced
range measurement bias as an estimated parameter in ad-
dition to the declination and right ascension of the space-
craft being tracked. The a priori values assumed for the
measurement bias uncertainty were based upon the cur-
rent and projected accuracy of calibrations derived from
GPS satellites and DSN VLBI data. The differenced range
data accuracy was chosen to be representative of current
DSN ranging system performance in the Galileo mission.

For an assumed a priori measurement bias uncertainty
(1) of 1.7 nsec (51 cm), the spacecraft angular coordi-
nates could be determined to an accuracy of 30 to 90 nrad

with about 4 hours of data. If the a priori measurement
bias uncertainty was 10 nsec (150 ¢m), which is represen-
tative of current DSN calibration capabilities, the result-
ing navigation accuracies ranged from 30 nrad to about
400 nrad. The analysis indicated that it is not possible to
estimate the measurement bias for spacecraft at zero dec-
lination unless some a priori knowledge of the spacecraft
angular coordinates exists; hence, differenced range angu-
lar accuracies were found to be poorest in the near-zero
declination regime. Earth orientation and baseline orien-
tation errors were not explicitly treated, but if these errors
can be kept to 10 nrad or less, which should be possible
with GPS and VLBI-based calibration data, their effect
on differenced range navigation accuracy should be small,
causing the accuracy statistics given herein to be degraded
by about 10 percent. Further work needs to be done in
order to determine the effects of transmission media cali-
bration errors on differenced range data and to establish
the complete spacecraft navigation accuracies that may be
achieved in realistic circumstances using differenced range
data in combination with other data types.
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Table 1. DSN station and baseline coordinates

Station Location Ts, km zs, km A, deg

DSS 14 Goldstone 5203.997 3677.052 243.1105
DSS 43 Canberra 5205.251 —-3674.749 148.9813
DSS 63 Madrid 4862.451 4115.109 355.7520
Baseline Length, km rg, km zpg, km Ag, deg
DSS 43-14 10,588.966 7620.841 7351.801 286.0523
DSS 63-14 8390.430 8378.986 —438.057 210.7265
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